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Abstract

It is a commonly observed fact that the blades of a helicopter droop under their
own weight when the aircraft is static but become almost straight when they start
spinning. This phenomenon is commonly attributed to “rotational stiffness”. In
this short article we present a simple calculation for the shape of the blades of a
helicopter in static and rotating condition. We show that the deflection or droop
of the tip of the blade reduces by a factor of about 30 when it changes from static
to full speed rotation. This calculation is at the undergraduate level and can
complement a course in differential equations, elementary statics or elasticity
theory.
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Introduction

Beam theory is a core component of undergraduate and graduate courses in statics
and elasticity [1-5]. It is also an optional component of a course on differential
equations, in which case it provides a natural example of a high order ordinary
differential equation (ODE) boundary value problem. While problems like
doubly clamped and cantilever beams with various kinds of loading are quite
common, a non-trivial situation which lends itself to a beam theoretic model is
that of a helicopter blade. It is a common observation that the helicopter blades
droop when they are static and become nearly straight when they start spinning.
This is generally attributed to “rotational stiffness” [6]; here we actually calculate
the shapes in the static and rotating situations. A prior treatment of helicopter
blade as a cantilever beam can be found in the book by Johnson [7]; he uses the
cantilever model to study the dynamics of the flapping blades but does not
comment on its static shape. A numerical approach which models the blades as
beams for a dynamical analysis can be found in the work of Mayo et. al. [8]. The
following simple calculation for the blade shape however appears to be novel in
the literature.

The Shape of the static blade

We model each blade of the main fan as a cantilever of uniform cross-section
which is clamped at the centre of the fan (x=0) and free at the far end (x=L) where
L is the beam length. For a typical helicopter [9], the blade length is 7 m and the
cross-section approximately rectangular with breadth 0.8 m and thickness 0.004
m (4 mm). The cross-sectional moment of inertia is 7.5x10° m*, the elastic
modulus of the material is 10* N/m? (100 GPa) and the density is 3000 kg/m?®.
The undeformed shape of the blade in the absence of all forces is perfectly
horizontal.

When the helicopter is dead, the blade hangs under its own weight. Under this
condition, the differential equation satisfied by the blade is
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where x measures the radially outward direction, y is the vertical deviation from
the undeflected state, El is the flexural rigidity, p; the mass per unit length of the
beam and there are the standard cantilever boundary conditions (BCs)



y(0)=y’(0)=0 at the centre and y’’(L)=y’’’(L)=0. This problem may be solved
easily [10] and we find
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Substituting the numerical values, El evaluates to 750000 Nm?, and p:g to 941
N/m. Using the above solution, the deflection of the tip turns out to be 37.65 cm.
It would have made more practical sense to report it as 38 cm but four place
accuracy will be required as a comparison benchmark when we solve the rotating
problem numerically.

The Force balance on the rotating blade

When the helicopter is live, the blade rotates with angular velocity » about a
vertical axis. We take a typical w to be 35 rad/s (340 rpm). We perform the
analysis in a reference frame which rotates with the blade. In this frame, the
rotation gives rise to a purely horizontal (radial) centrifugal force mw?x on each
mass element m of the blade. This force acts in addition to the weight. We now
formulate the equation for the shape of the blade in the presence of the rotation.
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Figure 1 : Force balance on the beam. CF refers to the centrifugal force.



The infinitesimal section of blade shown in Fig. 1 is inclined at angle 6 to the
horizontal, where we take @ to be finite rather than small — the limit will be taken
only at the end. The length of the section is dx/cosé and its mass is p1 times that
where p; is the mass per unit length. The forces acting on it are gravity, which is
vertical and centrifugal force which is horizontal. Gravity splits into a cosé
component transverse to the element and a sind component parallel to the
element. The former produces bending while the latter contributes to axial stress
and is rejected. Centrifugal force splits into a sind bender and a cosé axial stressor
which latter is neglected from consideration. The centrifugal force on the element
is (dm)w?x. Thus, the bending forces are —(dm)gcosd and (dm)cw?xsing. Now, we
take the limit 6 is very small. The infinitesimal mass becomes p.dx, the bending
component of gravity becomes —(p1dx)g and the bending component of
centrifugal force becomes (p1dx)w?x6. But, dy/dx=—tan@ (the negative because &
is clockwise positive), and for small angles tand also tends to &, so 4 is actually
—y’ and the centrifugal bending term at location X is —(p1dX)w?Xy’. Finally, to get
the force per unit length, we factor out dx from the force on the element and write
the bending equation as

EW =—pg-po’xy'  or (33)
EL® +po’xy'=—pg . (3b)

The associated boundary conditions (BC) are the same as the ones for the usual
cantilever, so we have y(0)=y’(0)=y>’(L)=y’”’(L)=0.

Solution and discussion

We use a finite differences solution scheme to solve (3). The details of this
scheme are presented in the Appendix. We vary the level N of spatial
discretization by using the static cantilever (w=0) as benchmark, where we
compare the numerical result with the analytical value of 37.65 cm. Maximum
accuracy of solution for the static cantilever was obtained at N =3000, where the
static deflection evaluates to 37.54 cm, amounting to an accuracy level of about
31i1n 1000. In Fig. 2 we present a comparison between the shapes of the static and
rotating blades. The diagram is drawn to scale, and a schematic representation of
the helicopter has been added. The deflection of the tip evaluates to 1.17 cm.
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Figure 2 : Deflection of the beam as per the numerical solution. Comparison of
static and rotating beam is presented.

We now analyse certain features of our solution. The most striking feature is that
the deflection of the tip has reduced by a factor of 30. This is consistent with what
we know from observation — that the blades of a helicopter droop when static and
appear almost straight when running. It is also logical — centrifugal force provides
a load opposite to the direction of gravity so it should raise the beam rather than
lowering it. The force is also many times stronger than gravity — at the midpoint
of the blade, »?x=4500 or so, while g is merely 10 ! Very crudely, the average
slope of the beam is about 1/600 (1.17 cm drop in 700 cm run) and the average
centrifugal force times the average slope is certainly of the same order of
magnitude as gravity. Hence the numerical solution is very plausible.

In Fig. 3 we enlarge the rotating blade to examine the shape in detail. The shape
appears physically realistic (for example it does not have any region with positive
slope or wiggles) and reassures us that the numerical results are not implausible.
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Figure 3 : Deflection of rotating beam as per numerical solution.

In view of this encouraging observation, we now go into the analysis of (3b) in a
more systematic manner. We rewrite it as
i@, po’ L pLig

L'y™ + 7 xy——T , (4)
which enables the identification of two dimensionless parameters x=piw?L*/El
and A=p;1L.3g/El. Taking their ratio gives the primary parameter driving the shape,
which is a=w?L/g i.e. the ratio of centrifugal force to gravity. A second
dimensionless parameter is the ratio of the tip deflection in the presence of
rotation to that in the absence of the rotation. We will call this ratio v. In Fig. 4
we show a plot of v vs. a as the latter is increased from zero (when v=1) to 1200
(when v=0.0241). We note that for the helicopter under consideration, v=850
approximately.
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Figure 4 : The dimensionless parameter v (ratio of rotating deflection to static
deflection) vs the parameter o (ratio of centrifugal to gravitational acceleration).

The plot seems to show a power law decrease, so we now present a log-log plot.
Recall that the logarithm is to the base 10.
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Figure 5 : Same as Fig. 4 but in log-log scale.



From this plot it appears that at high a, v varies approximately as a~°8. A heuristic
argument can explain the power law behaviour here. If we approximate the shape
of the beam as a straight line, then the average of the centrifugal acceleration is
®?L/2 and its vertical component is w?LO/2 where 6 is the deflection angle.
Equating this to the gravitational acceleration we have w?L6/2=g. The
dimensionless deflection of the tip is € so we immediately have 6 varying as
(9/w?L)ti.e. vvariesas oL,

The nearly flat nature of the plot in Fig. 4 at high o shows that the rotating blades
will tend to appear straight for helicopters with parameter values different from
our choices. Even at =300, a very low value, the deflection is reduced to 7
percent of its static value. We also note that this non-dimensionalized analysis
enables us to make predictions for the deflection when the helicopter is flying. In
this case, the lift on the blade is the extra force. If we assume it to be uniform
across the blade (the increasing translational speed of the blade away from the
centre is at least partially compensated by the decreasing pitch as one moves
radially outwards, so the assumption is reasonable — in any case the model is quite
approximate), its effect will be to replace —p1g on the RHS of (3b) by the lift per
unit length. This will have positive sign since it is directed upwards. Its
approximate magnitude will be 5 times higher than gravity, since a typical
helicopter weighs 15 to 30 times more than a blade and the helicopter has 3to 5
blades. The value of « in this case will be about 200, for which we geta v of 0.1
— the rise of the tip will still be 10 times lower than the droop when the helicopter
Is dead and the blade will appear very nearly straight when seen with the naked
eye.

Concluding remarks

In this Article we have explained the straightening of rotating helicopter blades
at a level which is easily accessible to the second year undergraduate student. It
can complement a course in statics, as well as one in differential equations (in
which context | had devised this problem). An excellent demonstration of the
straightening of helicopter blades as they are spun up us found in a video of
startup of Boeing Apache helicopter uploaded on Youtube by user “Michael
Miller”. The section of the video relevant for our purposes is reproduced at the
following link : www.shayak.in/Shayakpapers/DELTA/T068 V1.mp4.
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A more detailed analysis of the phenomenon can try to account for the —0.8 power
law in v vs. a and can also predict corrections to the shape arising from the
variations of El along the blade, presence of nonlinearities and other phenomena.
This however would take us outside the scope of the undergraduate classroom,
and we leave it for a future study.

Appendix : Finite differences solution scheme

Equation (3b) is not solvable exactly, so we must use a numerical procedure.
Although it is possible to solve this using Mathematica as a black box, we present
a brief exposition of the numerical method for the benefit of those who don’t
possess this software package (like myself). Since the problem has boundary
conditions specified rather than initial conditions (i.e. the data accompanying the
differential equation is given at two different values of the independent variable
instead of the same value of the independent variable), a direct method such as
Euler’s method or Runge Kutta method is ineffective. The most basic method is
that of finite differences, also called the matrix method. Here we present
significant details of the method so that an undergraduate student with adequate
understanding of linear algebra but no experience with numerical methods can
easily follow the discussion. Yet more details may be found in Reference [11].

In the preliminary step, the interval [0, L] is discretized into N significant points
or lattice sites and two boundary points on each side (four extra points are needed
for a problem with fourth derivative). Since x =0 corresponds to site #-1 and x =
L to site #N+2, the step size h thus becomes L/(N+3). The discrete second
derivative is a well known formula

o =2v. + .
y"i = yl+1 h-)Z/Z yl—l ’ (Al)
and the third derivative is
m 1 " "
Y :Z(y i~y z'—l) , Or (Aza)
=3y +3y. . — .
ymi — Yin Yi h3 Yia—JYio (A2b)
in the left side form and
=3y, 3y, — .
ym.:yz+2 yz+l+ Yi—Yia ’ (AS)
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in the right form. The centred fourth derivative is

y(4)i _ Yin —4yat 6};4’1' —4y+ Vi _ (A4)
The raw fourth derivative matrix S. contains the formula (A4) in every row,
arranged in a stepwise manner. This matrix is not square, having four more
columns than rows (this is indicated by the subscript “+”; the square form of the
fourth derivative will be denoted by S). The discrete fourth derivative is y® =
S.y. and we now have to impose the boundary conditions (BC) to convert the
non-square S, to a square matrix S. The product S.y. is shown below, with N
taken as 4 for conceptual clarity and ease of display :

o
Yo
1 4 6 4 1 0 0 0]y
1101 4 6 -4 1 0 0
y(4):S+y+:h_40 0 1 4 6 4 1 0|y, (AS)
00 0 1 -4 6 -4 1]y,
Ys
Yo

The first BC is of course y-1 =0. The next is y’(0) =0. Taking a right side first
derivative at site #—1; this yields y’—; = (yo—Yy-1)/h. Setting it equal to zero gives
yo=0 also. So y-; and y, are both zero and when we impose these conditions, the
first two columns of S, go away with no modification.

The BCs at the free end are implemented as a second derivative and a right side
third derivative both at site #N. This yields a pair of relations for yn+; and yn+2 in
terms of the significant sites. We have (again considering the case where N=4)

Ys=—Y3+2y4 (A62)

Yo ="2y3+3y4 - (A6b)
It is noted that if the BC derivatives had been implemented differently, for
example, a second derivative taken at site #N+1 instead of N, then the calculations
would have been more complicated but the end result would have been the same
in the limit h > 0.
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We substitute these results into (A5) excluding the first two columns of S. and
the first two elements of y. :

B4
6 4 1 0 0 O] b2
11-4 6 -4 1 0 0 y
@ _ 1 3
YUSW 1 4 6 -4 1 0 Vs (A7)
0 1 4 6 4 1| -y;+2y,
| —2y3+3y4

Expanding the last two rows of the matrix, we can see that (A7) is equivalent to

y® =Sy | where (A83)
(6 -4 1 0]
-4 6 4 1
s=1
h|1 -4 5 =2

0 1 -2 1

(A8b)

To complete the formulation of the problem, we must take into account the
p1w?Xy’ term. We express Y’ as P.y. where, P. is the raw first derivative matrix
and y. this time has only one boundary point over and above the significant
points. Conversion of P. to P is most easily done by considering the extra point
Yo, Whose value is already known to be zero. Then, the first derivative is

y'=Py ,where (A9a)
1 0 0 O]
11-1 1 0 0
p-_
A0 -1 1 0 (A%)
0 0 -1 1]

The factor of x before y’ is represented as a matrix whose (i,i)" element is x; and
all other elements are zero i.e. X =diag (X; X2 ..... Xy). We note that the numerical

value of pw?/El, given our problem parameters, is 0.1568 S| Units. Thus this term
IS

0.1568xy' — 0.1568 XPy , where (A10a)
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(x, 0 0 O]
X = 8 ’8’* ;)3 8 (A10b)
0 0 0 x4
The left hand side of the matrix r;zpresentation of (C_%b) IS now complete.
Finally, we have the right hand side. That is almost trivial :
b=-0.0012544[1; 1; ..; 1] , (A11)

where the ‘1’°s repeat N times and again SI Units have been used. Putting all this
together we have the matrix representation of the boundary value problem :

[S+0.1568XP]y=b (A12)

which is what enters into the computer. As a check on our procedure, we will also
solve for the shape of the beam in the absence of rotation, which satisfies the

equation Sy =b.
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